« ブラックベリーを子供に与えるという選択 | トップページ | 事故調査委員会が関わる事件は、免責するべきだ »

2009.09.27

飛行昆虫形ロボット(?)の動画

Live Leak より「Remote Control Cyborg Insects Now A Reality

By using direct optical lobe stimulation, the bugs can be steered left and right and up and down, and they also respond to stop and start commands. Basically, everything you could want in a remote control bug.

REMOTE-CONTROLLED insects may sound like the stuff of science fiction, but they have already been under development for some time now. In 2006, for example, the Defense Advanced Research More..Projects Agency (DARPA, the Pentagon's research and development branch) launched the Hybrid Insect Micro-Electro-Mechanical Systems program, whose ultimate aim is to turn insects into unmanned aerial vehicles.

Such projects provide proof of principle, but have met with limited success. Until now, that is. In the open access journal Frontiers in Integrative Neuroscience, a team of electrical engineers led by Hirotaka Sato of the University of California, Berkeley, report the development of an implantable radio-controlled neural stimulating device, with which they demonstrate, for the very first time, the accurate control of flight in freely flying insects.

The miniaturized system developed by Sato and his colleagues is mounted onto the pronotum (the dorsal, or upper, plate of the exoskeleton), and consists of electrodes implanted into the brain and wing muscles and a microbattery. Flight commands to start and stop flight and control the insect's elevation and turning were generated on a personal computer running specialized software, and transmitted to a microcontroller equipped with a radio transceiver.

The device is much simpler to program and use than similar ones developed previously, because it makes implicit use of the beetle's own flight control capabilities. The researchers found that flight could be initiated by simply applying a single pulse of electrical stimulation via the electrodes implanted into the left and right optic lobes. A single pulse from the same electrodes was also sufficient to stop the wing beats. Exactly how this occurs is unclear; it is known that visual inputs can initiate flight in locusts and fruit flies, and the researchers speculate that stimulation of the optic lobe activates large diameter "giant fibre" motor neurons which project from the brain to the wing muscles.

Once initiated, flight continued in the absence of further stimulation. The beetle powers its own flight, and levels with the horizon on its own, so that the neural and muscle stimulators are only used when a change in orientation or elevation is required. Turning could be initiated by asymmetrical stimulation of the muscles at the base of the wings, with a left turn being triggered by an electrical pulse to the right flight muscle, and vice versa. The stimulator could also be used to modulate the frequency of wing oscillations, which caused changes in altitude.

Electrically-controllable insects have obvious military applications. They could be used as micro air vehicles for reconnaissence missions, or as couriers which deliver small packages to locations that are not easily accessible to humans or terrestrial robots. The beetles used here (Mecynorrhina torquata) are among the largest of all insect species, and are capable of carrying addditional loads of up to 30% of their 8g body weight. But they could also be very useful to researchers who study insect mating behaviour, the foraging behaviour of insect predators, and flight dynamics and energetics.

昆虫形のロボットが飛んでいるのですが、ものすごい。
まあ、軍事開発だと言われると「ここまでやるのは軍事かな」とは思ってしまいます。
小説の世界が現実化してきた、というところですね。

飛行をリモコンで技術的にコントロールしているのですからロボットなのですが、

implantable radio-controlled neural stimulating device, with which they demonstrate, for the very first time, the accurate control of flight in freely flying insects.

植込み型の無線神経刺激制御装置は、素早く正確に昆虫の飛行を制御します。(かな?)

ロボットと書きましたが、Remote Control Cyborg Insects スレーブマスタータイプ・昆虫形サイボーグが適切ですかね?

しかし、飛び立ったり、カーテン着地(?)するところは、昆虫の動作そのものであって、なおかつ飛行方向は制御しているのですね。
良くもこんな事をやったものだ、と感心しますが「フランケンシュタイン」という単語がちらつきます。
Hirotaka Sato of the University of Californiaとはこの方のようです

BIOGRAPHY

Hirotaka Sato received his B.S.(2000), M.S. (2002), and Ph.D. (2005) in Applied Chemistry from Waseda University (Tokyo, Japan) for his work on nano/micro fabrication for MEMS using electrochemical processes including electrodeposition, electroless deposition, electrochemical etching under Professor T. Homma (Applied Chem.), Professor S. Shoji (EECS) and Prof. T. Osaka (Applied Chem.). Dr. Sato was a research associate in Waseda University from 2004 to 2006. Dr. Satos current research interests include micro bio-interface as well as nano/micro fabrication. He joined Professor Michel M. Maharbiz group to work on Hybrid Insect MEMS project in 2007 and has been developing cyborg beetles, the worlds first tetherless, neurocontrolled insects.

A Cyborg Beetle: Insect Flight Control by a Neural Stimulator [BPN451]

Despite major advances, performance of micro air vehicles (MAV’s) is still limited in terms of size, payload capacity, endurance, and controllability. Various species of insects have as-yet unmatched flight capabilities and increasingly well understood muscular and nervous systems. Additionally, some of these insects undergo complete metamorphosis making them amenable to implantation and internal manipulation during metamorphosis. In light of this, we attempt to create implantable bio-interface to electrically stimulate nervous and muscular systems of alive insect to control its flight. Our first target is beetle for the insect platform, and we would like to call it 'cyborg beetle'.

9月 27, 2009 at 01:03 午後 もの作り |

トラックバック

この記事のトラックバックURL:
http://app.cocolog-nifty.com/t/trackback/2299/46325230

この記事へのトラックバック一覧です: 飛行昆虫形ロボット(?)の動画:

コメント

>飛び立ったり、カーテン着地(?)するところは、昆虫の動作そのもの

見ました。すごいのひとことですね。
見る人によっては、ハエ叩き持ってこい、とか、キャー、とか言うかも知れない超絶的なレベル。

投稿: BUNTEN | 2009/09/27 18:23:14

これは生きた昆虫をラジコン制御で動かしてしまうわけですよね。悪の秘密結社の作戦のようです(^^;

投稿: About | 2009/09/28 1:33:07

コメントを書く